448 research outputs found

    Computation of steady and unsteady quasi-one-dimensional viscous/inviscid interacting internal flows at subsonic, transonic, and supersonic Mach numbers

    Get PDF
    Computations of viscous-inviscid interacting internal flowfields are presented for steady and unsteady quasi-one-dimensional (Q1D) test cases. The unsteady Q1D Euler equations are coupled with integral boundary-layer equations for unsteady, two-dimensional (planar or axisymmetric), turbulent flow over impermeable, adiabatic walls. The coupling methodology differs from that used in most techniques reported previously in that the above mentioned equation sets are written as a complete system and solved simultaneously; that is, the coupling is carried out directly through the equations as opposed to coupling the solutions of the different equation sets. Solutions to the coupled system of equations are obtained using both explicit and implicit numerical schemes for steady subsonic, steady transonic, and both steady and unsteady supersonic internal flowfields. Computed solutions are compared with measurements as well as Navier-Stokes and inverse boundary-layer methods. An analysis of the eigenvalues of the coefficient matrix associated with the quasi-linear form of the coupled system of equations indicates the presence of complex eigenvalues for certain flow conditions. It is concluded that although reasonable solutions can be obtained numerically, these complex eigenvalues contribute to the overall difficulty in obtaining numerical solutions to the coupled system of equations

    Extended quantum critical phase in a magnetized spin-1/2 antiferromagnetic chain

    Full text link
    Measurements are reported of the magnetic field dependence of excitations in the quantum critical state of the spin S=1/2 linear chain Heisenberg antiferromagnet copper pyrazine dinitrate (CuPzN). The complete spectrum was measured at k_B T/J <= 0.025 for H=0 and H=8.7 Tesla where the system is ~30% magnetized. At H=0, the results are in quantitative agreement with exact calculations of the dynamic spin correlation function for a two-spinon continuum. At high magnetic field, there are multiple overlapping continua with incommensurate soft modes. The boundaries of these continua confirm long-standing predictions, and the intensities are consistent with exact diagonalization and Bethe Ansatz calculations.Comment: 4 pages, 4 figure

    Integrating Sequence Capture and Restriction Site-Associated DNA Sequencing to Resolve Recent Radiations of Pelagic Seabirds

    Full text link
    The diversification of modern birds has been shaped by a number of radiations. Rapid diversification events make reconstructing the evolutionary relationships among taxa challenging due to the convoluted effects of incomplete lineage sorting (ILS) and introgression. Phylogenomic data sets have the potential to detect patterns of phylogenetic incongruence, and to address their causes. However, the footprints of ILS and introgression on sequence data can vary between different phylogenomic markers at different phylogenetic scales depending on factors such as their evolutionary rates or their selection pressures. We show that combining phylogenomic markers that evolve at different rates, such as paired-end double-digest restriction site-associated DNA (PE-ddRAD) and ultraconserved elements (UCEs), allows a comprehensive exploration of the causes of phylogenetic discordance associated with short internodes at different timescales. We used thousands of UCE and PE-ddRAD markers to produce the first well-resolved phylogeny of shearwaters, a group of medium-sized pelagic seabirds that are among the most phylogenetically controversial and endangered bird groups. We found that phylogenomic conflict was mainly derived from high levels of ILS due to rapid speciation events. We also documented a case of introgression, despite the high philopatry of shearwaters to their breeding sites, which typically limits gene flow. We integrated state- of-the-art concatenated and coalescent-based approaches to expand on previous comparisons of UCE and RAD-Seq data sets for phylogenetics, divergence time estimation, and inference of introgression, and we propose a strategy to optimize RAD-Seq data for phylogenetic analyses. Our results highlight the usefulness of combining phylogenomic markers evolving at different rates to understand the causes of phylogenetic discordance at different timescales.

    Palaeoceanographic changes in the late Pliocene promoted rapid diversification in pelagic seabirds

    Full text link
    Aim: Palaeoceanographic changes can act as drivers of diversification and speciation, even in highly mobile marine organisms. Shearwaters are a group of globally distributed and highly mobile pelagic seabirds. Despite a recent well-resolved phylogeny, shearwaters have controversial species limits, and show periods of both slow and rapid diversification. Here, we explore the role of palaeoceanographic changes on shearwaters' diversification and speciation. We investigate shearwater biogeography and the evolution of a key phenotypic trait, body size, and we assess the validity of their current taxonomy

    Field-driven phase transitions in a quasi-two-dimensional quantum antiferromagnet

    Full text link
    We report magnetic susceptibility, specific heat, and neutron scattering measurements as a function of applied magnetic field and temperature to characterize the S=1/2S=1/2 quasi-two-dimensional frustrated magnet piperazinium hexachlorodicuprate (PHCC). The experiments reveal four distinct phases. At low temperatures and fields the material forms a quantum paramagnet with a 1 meV singlet triplet gap and a magnon bandwidth of 1.7 meV. The singlet state involves multiple spin pairs some of which have negative ground state bond energies. Increasing the field at low temperatures induces three dimensional long range antiferromagnetic order at 7.5 Tesla through a continuous phase transition that can be described as magnon Bose-Einstein condensation. The phase transition to a fully polarized ferromagnetic state occurs at 37 Tesla. The ordered antiferromagnetic phase is surrounded by a renormalized classical regime. The crossover to this phase from the quantum paramagnet is marked by a distinct anomaly in the magnetic susceptibility which coincides with closure of the finite temperature singlet-triplet pseudo gap. The phase boundary between the quantum paramagnet and the Bose-Einstein condensate features a finite temperature minimum at T=0.2T=0.2 K, which may be associated with coupling to nuclear spin or lattice degrees of freedom close to quantum criticality.Comment: Submitted to New Journal of Physic

    Less than 50% sublattice polarization in an insulating S=3/2 kagome' antiferromagnet at low T

    Full text link
    We have found weak long range antiferromagnetic order in the quasi-two-dimensional insulating oxide KCr3(OD)6(SO4)2 KCr_3(OD)_6(SO_4)_2 which contains Cr3+^{3+} S=3/2 ions on a kagom\'{e} lattice. In a sample with \approx 76% occupancy of the chromium sites the ordered moment is 1.1(3)μB\mu_B per chromium ion which is only one third of the N\'{e}el value gμBS=3μBg\mu_BS=3\mu_B. The magnetic unit cell equals the chemical unit cell, a situation which is favored by inter-plane interactions. Gapless quantum spin-fluctuations (Δ/kB>\Delta/k_B > T_N=1.6Karethedominantcontributiontothespincorrelationfunction, = 1.6K are the dominant contribution to the spin correlation function, S(Q,\omega)$ in the ordered phase.Comment: 18 pages, RevTex/Latex, with 6 figure

    Concentration Dependence of Superconductivity and Order-Disorder Transition in the Hexagonal Rubidium Tungsten Bronze RbxWO3. Interfacial and bulk properties

    Full text link
    We revisited the problem of the stability of the superconducting state in RbxWO3 and identified the main causes of the contradictory data previously published. We have shown that the ordering of the Rb vacancies in the nonstoichiometric compounds have a major detrimental effect on the superconducting temperature Tc.The order-disorder transition is first order only near x = 0.25, where it cannot be quenched effectively and Tc is reduced below 1K. We found that the high Tc's which were sometimes deduced from resistivity measurements, and attributed to compounds with .25 < x < .30, are to be ascribed to interfacial superconductivity which generates spectacular non-linear effects. We also clarified the effect of acid etching and set more precisely the low-rubidium-content boundary of the hexagonal phase.This work makes clear that Tc would increase continuously (from 2 K to 5.5 K) as we approach this boundary (x = 0.20), if no ordering would take place - as its is approximately the case in CsxWO3. This behaviour is reminiscent of the tetragonal tungsten bronze NaxWO3 and asks the same question : what mechanism is responsible for this large increase of Tc despite the considerable associated reduction of the electron density of state ? By reviewing the other available data on these bronzes we conclude that the theoretical models which are able to answer this question are probably those where the instability of the lattice plays a major role and, particularly, the model which call upon local structural excitations (LSE), associated with the missing alkali atoms.Comment: To be published in Physical Review

    Frustration-Induced Two Dimensional Quantum Disordered Phase in Piperazinium Hexachlorodicuprate

    Full text link
    Piperazinium Hexachlorodicuprate (PHCC) is shown to be a frustrated quasi-two-dimensional quantum Heisenberg antiferromagnet with a gapped spectrum. Zero-field inelastic neutron scattering and susceptibility and specific heat measurements as a function of applied magnetic field are presented. At T = 1.5 K, the magnetic excitation spectrum is dominated by a single propagating mode with a gap, Delta = 1 meV, and bandwidth of approximately 1.8 meV in the (h0l) plane. The mode has no dispersion along the b* direction indicating that neighboring a-c planes of the triclinic structure are magnetically decoupled. The heat capacity shows a reduction of the gap as a function of applied magnetic field in agreement with a singlet-triplet excitation spectrum. A field-induced ordered phase is observed in heat capacity and magnetic susceptibility measurements for magnetic fields greater than H_c1 approximately equal to 7.5 Tesla. Analysis of the neutron scattering data reveals the important exchange interactions and indicates that some of these are highly frustrated.Comment: 13 pages with 14 figures, 7 pages of text, 6 pages of figures. Submitted to Phys. Rev. B 4/7/2001. email comments to [email protected] or [email protected]
    corecore